Write your message
Volume 8, Issue 2 (Iranian Journal of Ergonomics 2020)                   Iran J Ergon 2020, 8(2): 50-60 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

nazem F, rezaei A, Jalili M, saki H. Design and Validation of Non-Exercise Equations for Estimation of Aerobic Capacity in Iranian Boys. Iran J Ergon 2020; 8 (2) :50-60
URL: http://journal.iehfs.ir/article-1-675-en.html
1- Department of Physical Education and Sport Sciences, Section of Sport Physiology, Bu-Ali Sina University, Hamadan, Iran , f.nazem1336@gmail.com
2- Department of Physical Education and Sport Sciences, Section of Sport Physiology, Bu-Ali Sina University, Hamadan, Iran
Abstract:   (7749 Views)
Background and Aim:  Accurate and rapid measurement of cardiorespiratory system performance by estimation methods regardless of basic physiological fitness level, geographical environment, culture and nutrition is of paramount importance. The purpose of this study was to design linear regression equations to estimate the aerobic capacity of healthy adolescent boys without the use of sport tests and validation of this equations.
Methods: In the present semi-experimental study, 156 healthy adolescent boys aged 13 to 17 years with a mean body mass index of 21.43 ± 4.5 Kg / m2 were selected by purposive sampling method. To design the non-sport equation for estimating maximum oxygen consumption (VO2peak), a multiple regression linear model and Pearson correlation were used to validate the equations.
Results: Significant correlations were observed between the measured VO2peak and the anthropometric and physiological variables (R=0.122 - 0.799, P<0.001). Also, a valid non-exercise linear equation for boys' VO2peak prediction was designed with variables such as age, BMI and resting heart rate (SEE = 3.59 mL/kg/min, R2 = 0.712, P<0.001). The estimated VO2peak from equations had a significant correlation with the obtained criterion value. (R = 0.707 – 0.730, P<0.01).
Conclusion: According to the results of the present study, it is possible to use aerobic capacity estimation equations, is a simple, accurate, safe tool in assessing the baseline cardiorespiratory fitness (VO2peak). The use of non-Exercise equations in the planning of exercise in large populations of adolescent boys and even as a daily clinical practice in the elderly and heart patients with the goals of promoting health, cardiovascular health, preventive actions is very important.
Full-Text [PDF 709 kb]   (6684 Downloads) |   |   Extended Abstract (HTML)  (966 Views)  
According to the results of the present study, it is possible to use aerobic capacity estimation equations, is a simple, accurate, safe tool in assessing the baseline cardiorespiratory fitness (VO2peak). The use of non-Exercise equations in the planning of exercise in large populations of adolescent boys and even as a daily clinical practice in the elderly and heart patients with the goals of promoting health, cardiovascular health, preventive actions is very important.

Type of Study: Review | Subject: Other Cases
Received: 2019/12/24 | Accepted: 2020/08/17 | ePublished: 2020/08/17

References
1. Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012; 2(2):1143-1211. [DOI:10.1002/cphy.c110025] [PMID] [PMCID]
2. Lavie CJ, Arena R, Swift DL, Johannsen, NM, Sui X, Lee DC, Earnest CP. Exercise and the cardiovascular system: clinical science and cardiovascular outcomes. Circ Res. 2015; 117(2):207-19. [DOI:10.1161/CIRCRESAHA.117.305205] [PMID] [PMCID]
3. Reis JF, Fatela P, Mendonca GV, Vaz JR, Valamatos MJ, Infante J, et al. Tissue Oxygenation in Response to Different Relative Levels of Blood-Flow Restricted Exercise. Front Physiol. 2019; 10:407. [DOI:10.3389/fphys.2019.00407] [PMID] [PMCID]
4. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009; 301(19):2024-35. [DOI:10.1001/jama.2009.681] [PMID]
5. Prieto-Benavides DH, García-Hermoso A, Izquierdo M, Alonso-Martínez AM, Agostinis-Sobrinho C, Correa-Bautista JE, et al. Cardiorespiratory Fitness Cut-Points are Related to Body Adiposity Parameters in Latin American Adolescents. Medicina. 2019; 55(9):508. [DOI:10.3390/medicina55090508] [PMID] [PMCID]
6. Rasch-Halvorsen Ø, Hassel E, Langhammer A, Brumpton BM, Steinshamn S. The association between dynamic lung volume and peak oxygen uptake in a healthy general population: the HUNT study. BMC Pulmon Med. 2019; 19(1):2. [DOI:10.1186/s12890-018-0762-x] [PMID] [PMCID]
7. Poole DC, Jones AM. Measurement of the maximum oxygen uptake VO2max: VO2peak is no longer acceptable. J App Phys. 2017;122(4):997-1002. [DOI:10.1152/japplphysiol.01063.2016] [PMID]
8. American College of Sports Medicine, editor. ACSM's health-related physical fitness assessment manual. Philadelphia: Lippincott Williams & Wilkins; 2013. [Article]
9. Cade WT, Bohnert KL, Reeds DN, Peterson LR, Bittel AJ, Bashir A, Byrne BJ, Taylor CL. Peak oxygen uptake (VO2peak) across childhood, adolescence and young adulthood in Barth syndrome: Data from cross-sectional and longitudinal studies. PloS One. 2018;13(5):e0197776. [DOI:10.1371/journal.pone.0197776] [PMID] [PMCID]
10. Jurca R, Jackson AS, LaMonte MJ, Morrow JR, Blair SN, Wareham NJ, et al. Assessing cardiorespiratory fitness without performing exercise testing. America J Prev Med. 2005; 29(3):185-93. [DOI:10.1016/j.amepre.2005.06.004] [PMID]
11. Shenoy S, Tyagi BS, Sandhu JS. Concurrent validity of the non-exercise-based VO2max prediction equation using percentage body fat as a variable in Asian Indian adults. Sports Med, Arthroscopy, Rehab, Ther Tech. 2012; 4(1):34. [DOI:10.1186/1758-2555-4-34] [PMID] [PMCID]
12. Sartor F, Vernillo G, De Morree HM, Bonomi AG, La Torre A, Kubis HP, Veicsteinas A. Estimation of maximal oxygen uptake via submaximal exercise testing in sports, clinical, and home settings. Sports Med. 2013; 43(9):865-73. [DOI:10.1007/s40279-013-0068-3] [PMID]
13. St Clair Gibson A, Broomhead S, Lambert MI, Hawley JA. Prediction of maximal oxygen uptake from a 20-m shuttle run as measured directly in runners and squash players. Journal of Sports Sciences. 1998 Jan 1;16(4):331-5. [DOI:10.1080/02640419808559361] [PMID]
14. Bradshaw DI, George JD, Hyde A, LaMonte MJ, Vehrs PR, Hager RL, Yanowitz FG. An accurate VO2max nonexercise regression model for 18-65-year-old adults. Res Quart Exercise Sport. 2005; 76(4):426-32. [DOI:10.1080/02701367.2005.10599315] [PMID]
15. Schembre SM, Riebe DA. Non-exercise estimation of VO2max using the international physical activity questionnaire. Meas Phys Edu Exer Sci. 2011; 15(3):168-81. [DOI:10.1080/1091367X.2011.568369] [PMID] [PMCID]
16. George JD, Paul SL, Hyde A, Bradshaw DI, Vehrs PR, Hager RL, Yanowitz FG. Prediction of maximum oxygen uptake using both exercise and non-exercise data. Meas Phys Edu Exer Sci. 2009; 13(1):1-2. [DOI:10.1080/10913670802609086]
17. Rexhepi AM, Brestovci B. Prediction of VO2max based on age, body mass, and resting heart rate. Human Mov. 2014; 15(1):56-9. [DOI:10.2478/humo-2014-0003]
18. Klusiewicz A, Borkowski L, Sitkowski D, Burkhard-Jagodzińska K, Szczepańska B, Ładyga M. Indirect methods of assessing maximal oxygen uptake in Rowers: Practical implications for evaluating physical fitness in a training cycle. J Human Kinetics. 2016; 50(1):187-94. [DOI:10.1515/hukin-2015-0155] [PMID] [PMCID]
19. Davis JA. Direct determination of aerobic power. Phys Assess Human Fit. 1995:9-17. [Google Scholar]
20. Ramsbottom R, Brewer J, Williams C. A progressive shuttle run test to estimate maximal oxygen uptake. British J Sports Med. 1988; 22(4):141-4. [DOI:10.1136/bjsm.22.4.141] [PMID] [PMCID]
21. Kind S, Brighenti-Zogg S, Mundwiler J, Schüpbach U, Leuppi JD, Miedinger D, Dieterle T. Factors Associated with Cardiorespiratory Fitness in a Swiss Working Population. J Sports Med. 2019; Article ID: 5317961. [DOI:10.1155/2019/5317961] [PMID] [PMCID]
22. Neto M, de Albuquerque G, Farinatti PD. Non-exercise models for prediction of aerobic fitness and applicability on epidemiological studies: descriptive review and analysis of the studies. Revista Brasileira de Medicina do Esporte. 2003; 9(5):304-14. [DOI:10.1590/S1517-86922003000500006]
23. Loe H, Nes BM, Wisløff U. Predicting VO2peak from submaximal-and peak exercise models: the HUNT 3 fitness study, Norway. PloS One. 2016; 11(1):e0144873. [DOI:10.1371/journal.pone.0144873] [PMID] [PMCID]
24. Zhang T, Zhang CF, Jin F, Wang L. Association between genetic factor and physical performance. Hereditas. 2004; 26(2):219-26. [PMID] [Google Scholar]
25. Hirai T, Kusaka Y, Suganuma N, Seo A, Tobita Y. Work form affects maximum oxygen uptake for one year in workers. Indust Health. 2011; 49(3):321-7. [DOI:10.2486/indhealth.MS870] [PMID]
26. Chatterjee S, Chatterjee P. Prediction of maximal oxygen consumption from body mass, height and body surface area. Indian J Physiol Pharmacol. 2006; 50(2):181-6. [Article] [Google Scholar]
27. Rao AV, Phadke AV, Patil PB, Joshi AR. Comparison of non-exercise test and step test in estimation of aerobic capacity (VO2max) in young adults. National J Phys Pharm Pharmac. 2014; 4(3):218. [DOI:10.5455/njppp.2014.4.150420141]
28. Bonen A, Heyward VH, Cureton KJ, Boileau RA, Massey BH. Prediction of maximal oxygen uptake in boys, ages 7-15 years. Med Sci Sport. 1979; 11(1):24-9. [PMID] [Google Scholar]
29. Verma SS, Gupta RK, Kishore N, Sen GJ. A simple relationship between maximal aerobic power and body weight in Indian adolescent boys. India J Med Sci. 1986; 40(4):93. [Google Scholar]
30. Erdmann LD, Hensley LD, Dolgener FA, Graham RE. Nonexercise Prediction of VO2peak in Middle School-Age Boys. Meas Phys Educ Exer Sci. 1999; 3(1):37-50. [DOI:10.1207/s15327841mpee0301_3]
31. Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Ped. 1978; 93(1):62-6. [DOI:10.1016/S0022-3476(78)80601-5]
32. Hinkle DE, Wiersma W, Jurs SG. Applied statistics for the behavioral sciences. Massachusetts: Houghton Mifflin; 2003. [Google Scholar]
33. Montgomery DC, Peck EA, Vining GG. Introduction to linear regression analysis. Washington D.C.: John Wiley & Sons; 2012. [Google Scholar]
34. Kind S, Brighenti-Zogg S, Mundwiler J, Schüpbach U, Leuppi JD, Miedinger D, Dieterle T. Factors Associated with Cardiorespiratory Fitness in a Swiss Working Population. J Sport Med. 2019; Article ID: 5317961. [DOI:10.1155/2019/5317961] [PMID] [PMCID]
35. Dagan SS, Segev S, Novikov I, Dankner R. Waist circumference vs body mass index in association with cardiorespiratory fitness in healthy men and women: a cross sectional analysis of 403 subjects. Nut J. 2013; 12(1):12. [DOI:10.1186/1475-2891-12-12] [PMID] [PMCID]
36. Schantz P, Eriksson JS, Rosdahl H. The heart rate method for estimating oxygen uptake: analyses of reproducibility using a range of heart rates from commuter walking. Eur J App Phys. 2019; 119(11-12):2655-71. [DOI:10.1007/s00421-019-04236-0] [PMID] [PMCID]
37. Salehi S, Poursaeid Esfahani M, Hassabi M. Determine the estimated validity of Vo2max based on the formula in the female athlete and non-athlete. Res Med. 2020; 44(1): 326-30. [Article] [Google Scholar]
38. Wei Z, Chen L, Hou X, van Zijl PC, Xu J, Lu H. Age-related alterations in brain perfusion, venous oxygenation, and oxygen metabolic rate of mice: a 17-month longitudinal MRI study. Front Neurol. 2020; 11. [DOI:10.3389/fneur.2020.00559] [PMID] [PMCID]
39. Fleg JL, Morrell CH, Bos AG, Brant LJ, Talbot LA, Wright JG, Lakatta EG. Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circul. 2005; 112(5):674-82. [DOI:10.1161/CIRCULATIONAHA.105.545459] [PMID]
40. Castillo-Garzón MJ, Ruiz JR, Ortega FB, Gutiérrez Á. Anti-aging therapy through fitness enhancement. Clin Intervent Age. 2006; 1(3):213. [DOI:10.2147/ciia.2006.1.3.213] [PMID] [PMCID]
41. Dwyer GB, Davis MD. ACSM's health related physical fitness manual. New Jersey: Lippincott Williams & Wilkins; 2008. [Google Scholar]
42. Solway S, Brooks D, Lacasse Y, Thomas S. A qualitative systematic overview of the measurement properties of functional walk tests used in the cardiorespiratory domain. Chest. 2001; 119(1):256-70. [DOI:10.1378/chest.119.1.256] [PMID]
43. Mackenzie B. Performance evaluation tests. London: Electric World Plc. 2005; 24(25):57-158. [Article] [Google Scholar]
44. Boreham C, Twisk J, Neville C, Savage M, Murray L, Gallagher A. Associations between physical fitness and activity patterns during adolescence and cardiovascular risk factors in young adulthood: the Northern Ireland Young Hearts Project. Int J Sports Med. 2002; 23(S1):22-6. [DOI:10.1055/s-2002-28457] [PMID]
45. Anderssen SA, Cooper AR, Riddoch C, Sardinha LB, Harro M, Brage S, Andersen LB. Low cardiorespiratory fitness is a strong predictor for clustering of cardiovascular disease risk factors in children independent of country, age and sex. Europ J Cardiovasc Prev Rehab. 2007; 14(4):526-31. [DOI:10.1097/HJR.0b013e328011efc1] [PMID]
46. Wasserman K. Diagnosing cardiovascular and lung pathophysiology from exercise gas exchange. Chest. 1997; 112(4):1091-101. [DOI:10.1378/chest.112.4.1091] [PMID]
47. Sloan RA, Haaland BA, Leung C, Padmanabhan U, Koh HC, Zee A. Cross-validation of a non-exercise measure for cardiorespiratory fitness in Singaporean adults. Singapore Med J. 2013; 54(10):576-80. [DOI:10.11622/smedj.2013186] [PMID]
48. Sharma M, Kamal R, Chawla K. Correlation of body composition to aerobic capacity; A cross sectional study. Int J App Res. 2016; 2(1):38-42. [Google Scholar]
49. Wier LT, Jackson AS, Ayers GW, Arenare B. Nonexercise models for estimating VO2max with waist girth, percent fat, or BMI. Med Sci Sports Exer. 2006; 38(3):555-61. [DOI:10.1249/01.mss.0000193561.64152] [PMID]
50. Hale T. Exercise physiology: a thematic approach. New Jersey: John Wiley & Sons; 2005. [Article]
51. Menezes Júnior FJ, Jesus ÍC, Leite N. Predictive equations of maximum oxygen consumption by shuttle run test in children and adolescents: A systematic review. Revista Paulista de Pediatria. 2019: 37(2). [DOI:10.1590/1984-0462/;2019;37;2;00016] [PMID] [PMCID]
52. Armstrong N, Barker AR. Oxygen uptake kinetics in children and adolescents: a review. Pediat Exer Sci. 2009; 21(2):130-47. [DOI:10.1123/pes.21.2.130] [PMID]
53. Nazem F, Saki S, Jalili M. Validation of Francis Step Protocol by Respiratory Gases Analyses and Design Native Equation to Estimate Aerobic Capacity in Iranian Boys. Knowledge Health. 2017; 12(1):66-72. [Google Scholar]
54. Uth N, Sørensen H, Overgaard K, Pedersen PK. Estimation of V̇O2max from the ratio between HR max and HR rest-the Heart Rate Ratio Method. Euro J App Phys. 2005; 91(1):111-5. [DOI:10.1007/s00421-003-0988-y] [PMID]
55. Narang N, Thibodeau JT, Levine BD, Gore MO, Ayers CR, Lange RA, et al. Inaccuracy of estimated resting oxygen uptake in the clinical setting. Circul. 2014; 129(2):203-10. [DOI:10.1161/CIRCULATIONAHA.113.003334] [PMID]
56. Tonelli AR, Wang XF, Abbay A, Zhang Q, Ramos J, McCarthy K. Can we better estimate resting oxygen consumption by incorporating arterial blood gases and spirometric determinations? Respir Care. 2015; 60(4):517-25. [DOI:10.4187/respcare.03555] [PMID] [PMCID]
57. Shephard RJ, Weese CH, Merriman JE. Prediction of maximal oxygen intake from anthropometric data. Int J App Phys Inc Occ Phys. 1971; 29(2):119-30. [DOI:10.1007/BF00698022] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Ergonomics

Designed & Developed by : Yektaweb |