1. Schmidtler J, Knott V, Hölzel C, Bengler K. Human Centered Assistance Applications for the working environment of the future. Occupational Ergonomics. 2015;12(3):83-95. [DOI: 10.3233/OER-150226]
2. Leigh, J.P. Costs of Occupational Injuries and Illnesses. University of Michigan Press, 2000.
3. Grieve JR, Dickerson CR. Overhead work: Identification of evidence-based exposure guidelines. Occupational Ergonomics. 2008;8(1):53-66. [DOI: 10.3233/OER-2008-8105]
4. Kadefors R, Engström T, Petzäll J, Sundström L. Ergonomics in parallelized car assembly: a case study, with reference also to productivity aspects. Appl Ergon. 1996;27(2):101-10. [DOI: 10.1016/0003-6870(95)00064-x] [PMID]
5. Rempel D, Star D, Gibbons B, Barr A, Janowitz I. Development and evaluation of a new device for overhead drilling. Prof Saf. 2007;52(11):30-5. [PMID]
6. Rempel D, Star D, Barr A, Janowitz I. Overhead drilling: Comparing three bases for aligning a drilling jig to vertical. J Safety Res. 2010;41(3):247-51. [DOI: 10.1016/j.jsr.2010.01.003] [PMID]
7. Lowe BD, Dick RB. Workplace Exercise for Control of Occupational Neck/Shoulder Disorders a Review of Prospective Studies. Environ Health Insights. 2015;8(Suppl 1):75-95. [DOI: 10.4137/EHI.S15256] [PMID]
8. Vickers NJ. Animal Communication: When I’m Calling You, Will You Answer Too? Curr Biol. 2017;27(14):R713-5. [DOI: 10.1016/j.cub.2017.05.064] [PMID]
9. De Looze MP, Bosch T, Krause F, Stadler KS, O’Sullivan LW. Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics. 2016;59(5):671-81. [DOI: 10.1080/00140139.2015.1081988] [PMID]
10. De Looze MP, Krause F, O’Sullivan LW. The potential and acceptance of exoskeletons in industry. Wearable robotics: Challenges and trends: Springer; 2017:195-9. [DOI: 10.1007/978-3-319-46532-6_32]
11. Gillette JC, Stephenson ML, editors. EMG assessment of a shoulder support exoseleton during on-site job tasks. Proceedings of the American Society of Biomechanics Annual Meeting, Boulder, CO. 2017. [Link]
12. Sylla N, Bonnet V, Colledani F, Fraisse P. Ergonomic contribution of ABLE exoskeleton in automotive industry. International Journal of Industrial Ergonomics. 2014;44(4):475-81. [DOI: 10.1016/j.ergon.2014.03.008]
13. Rashedi E, Kim S, Nussbaum MA, Agnew MJ. Ergonomic evaluation of a wearable assistive device for overhead work. Ergonomics. 2014;57(12):1864-74. [DOI: 10.1080/00140139.2014.952682] [PMID]
14. Fagan KM, Hodgson MJ. Under-recording of work-related injuries and illnesses: An OSHA priority. J Safety Res. 2017;60:79-83. [DOI: 10.1016/j.jsr.2016.12.002] [PMID]
15. Butler TR. Exoskeleton technology: Making workers safer and more productive. Professional Safety. 2016;61(09):32-6. [Link]
16. Spada S, Ghibaudo L, Gilotta S, Gastaldi L, Cavatorta MP. Analysis of exoskeleton introduction in industrial reality: main issues and EAWS risk assessment. International Conference on Applied Human Factors and Ergonomics; 2017:236-44. [DOI: 10.1007/978-3-319-60825-9_26]
17. Liu S, Hemming D, Luo RB, Reynolds J, Delong JC, Sandler BJ, et al. Solving the surgeon ergonomic crisis with surgical exosuit. Surg Endosc. 2018;32(1):236-44. [DOI: 10.1007/s00464-017-5667-x] [PMID]
18. Viteckova S, Kutilek P, Jirina M. Wearable lower limb robotics: A review. Biocybernetics and biomedical engineering. 2013;33(2):96-105. [DOI: 10.1016/j.bbe.2013.03.005]
19. Theurel J, Desbrosses K, Roux T, Savescu A. Physiological consequences of using an upper limb exoskeleton during manual handling tasks. Appl Ergon. 2018;67:211-7. [DOI: 10.1016/j.apergo.2017.10.008] [PMID]
20. Huysamen K, Bosch T, de Looze M, Stadler KS, Graf E, O'Sullivan LW. Evaluation of a passive exoskeleton for static upper limb activities. Appl Ergon. 2018;70:148-55. [DOI: 10.1016/j.apergo.2018.02.009] [PMID]
21. Hermens H, Freriks B, Merletti R, Rau G, Disselhorst-Klug-Aachen C, Stegeman D, et al. The SENIAM Project. [Link]
22. Grazioso S, Caporaso T, Palomba A, Nardella S, Ostuni B, Panariello D, et al. Assessment of upper limb muscle synergies for industrial overhead tasks: a preliminary study. 2019 II Workshop on Metrology for Industry 40 and IoT (MetroInd4 0&IoT). IEEE. 2019. [Link]
23. Konrad P. The abc of emg. A practical introduction to kinesiological electromyography. 2005;1(2005):30-5. [Link]
24. Alabdulkarim S, Nussbaum MA. Influences of different exoskeleton designs and tool mass on physical demands and performance in a simulated overhead drilling task. Appl Ergon. 2019;74:55-66. [DOI: 10.1016/j.apergo.2018.08.004] [PMID]
25. De Vries AW, Krause F, de Looze MP. The effectivity of a passive arm support exoskeleton in reducing muscle activation and perceived exertion during plastering activities. Ergonomics. 2021;64(6):712-21. [DOI: 10.1080/00140139.2020.1868581] [PMID]
26. Desbrosses K, Schwartz M, Theurel J. Evaluation of two upper-limb exoskeletons during overhead work: influence of exoskeleton design and load on muscular adaptations and balance regulation. Eur J Appl Physiol. 2021;121(10):2811-23. [DOI: 10.1007/s00421-021-04747-9] [PMID]
27. Grazi L, Trigili E, Proface G, Giovacchini F, Crea S, Vitiello N. Design and experimental evaluation of a semi-passive upper-limb exoskeleton for workers with motorized tuning of assistance. IEEE Trans Neural Syst Rehabil Eng. 2020; 28(10):2276-85. [DOI: 10.1109/TNSRE.2020.3014408] [PMID]
28. Iranzo S, Piedrabuena A, Iordanov D, Martinez-Iranzo U, Belda-Lois JM. Ergonomics assessment of passive upper-limb exoskeletons in an automotive assembly plant. Appl Ergon. 2020;87:103120. [DOI: 10.1016/j.apergo.2020.103120] [PMID]
29. Schmalz T, Schändlinger J, Schuler M, Bornmann J, Schirrmeister B, Kannenberg A, et al. Biomechanical and metabolic effectiveness of an industrial exoskeleton for overhead work. Int J Environ Res Public Health. 2019;16(23):4792. [DOI: 10.3390/ijerph16234792] [PMID]